GPU-Acceleration of In-Memory Data Analytics

Evangelia Sitaridi

AWS Redshift

GPUs for Telcos

- Fast query-time
 - Quickly identify network problems
 - Respond fast to customers
- Geospatial visualization
 - Take advantage of GPU visualization capabilities

SMS Hub traffic

*Picture taken from:

http://www.vizualytics.com/Solutions/Telecom/Telecom.html

No time to index data

GPUs for Social Media Analytics

Challenges for GPU Databases

- Special threading model -> Increased programming complexity
 - Which algorithms more efficient for GPUs?
 - How much multiple code paths increase cost of code maintenance?
- Special memory architecture
 - How to adapt data layout?
- Limited memory capacity
 - Data transfer cost between CPUs and GPUs
 - a) Through PCI/E link to the GPU
 - b) From storage system to the GPU
- Fair comparison against software-based solutions

Challenges for GPU Databases

- Special threading model -> Increased programming complexity
 - Which algorithms more efficient for GPUs?
 - How much multiple code paths increase cost of code maintenance?
- Special memory architecture
 - How to adapt data layout?
- Limited memory capacity
 - Data transfer cost between CPUs and GPUs
 - a) Through PCI/E link to the GPU
 - b) From storage system to the GPU
- Fair comparison against software-based solutions

Outline

OCPU vs GPU introduction

- Accelerated wildcard string search
 - o Insight: Change the layout of the strings in the GPU main memory
 - 3X speed-up & 2X energy savings against parallel state-of-the-art CPU libraries
- Gompresso: Massively parallel decompression
 - o Insight: Trade-off compression ratio for increased parallelism
 - o 2X speed-ups & 1.2X energy savings against multi-core state-of-the-art CPU libraries
- oGPUs on the cloud

CPU-GPU Analogies

Goal: Low latency

Goal: High throughput (overlapping different instructions)

CPU thread

RAM

Tens of threads

Hundreds of GBs capacity Few tens of GB

Thousands of threads

K40: 15 Stream Multiprocessors

Outline

- CPU vs GPU introduction
- Accelerated wildcard string search
 - o Insight: Change the layout of the strings in the GPU main memory
 - 3X speed-up & 2X energy savings against parallel state-of-the-art CPU libraries
- Gompresso: Massively parallel decompression
 - o Insight: Trade-off compression ratio for increased parallelism
 - o 2X speed-ups & 1.2X energy savings against multi-core state-of-the-art CPU libraries
- OGPUs on the cloud

Text Query Applications

ACGTACCTGATCGTAGGATCCCAAGTACATCTTC

ACC

Input

Search Pattern

GENOMIC DATA

-	Id	Address		Wild card searches	
	3	"9 Front St, Washington DC, 20001"	+	"*3rdAve*New York*"	
	8	"3338 A Lockport Pl #6, Margate City, NJ, 8402"		Search Pattern	
	9	"18 3rd Ave, New York, NY, 10016"			
	15	"88 Sw 28th Ter, Harrison, NJ, 7029"		ATADACE COLLIMBIC	
	16	"87895 Concord Rd, La Mesa, CA, 91142"		ATABASE COLUMNS	

Q2,9,13,14,16,20 of TPC-H contain expensive LIKE predicates

Wildcard Search Challenges

- Approaches simplifying search cannot be applied
 - String indexes, e.g. suffix trees
 - For query '%customer%complaints' multiple queries need be issued
 - '%customer%' AND '%complaints%'
 - Confirm results
 - Dictionary compression
 - Wildcard searches not simplified using dictionaries
 - String data need to be decompressed

Background: How to Search Text Fast?

Knuth-Morris-Pratt Algorithm

Input: ACACATACCTACTTTACGTACGT

Step 6

i=5

j=5

Pattern: ACACACG Character mismatch

Shift pattern table - 1001234

Advance to the next character:

- a) If the input matches to the pattern
- b) While there is a mismatch shift to the left of the pattern Stop when the beginning of the pattern has been reached

Background: How to Search Text Fast?

Knuth-Morris-Pratt Algorithm

Input: ACACATACCTACTTTACGTACGT Step 6 j=5

Pattern: ACACACG Character mismatch

ACACATACCTACTTTACGTACGT

Step 7

ACACACAC

Shift pattern

Step 7

j=1

Shift pattern table - 0 0 1 2 3 4

Advance to the next character:

- a) If the input matches to the pattern
- b) While there is a mismatch shift to the left of the pattern Stop when the beginning of the pattern has been reached

GPU Limiting factor: Cache Pressure

Threads matching different strings

Warp size: 32

Stream Multiprocessors: 15

#Warps in each SM: 64

Cache footprint: 30720 cache lines

>>

L2 Capacity: 12288 cache lines

Tesla K40 architecture

Smaller cache size per thread than CPUs: Need improved locality!

Adapt Memory Layout: Pivoting Strings

Baseline (contiguous) layout

String I String 2

String 3

CTAACCGAGTAAAGAACGTAAACTCATTCGACTAAACCGAGTAAAGA...

Pivoted layout

CTAAACGTCTAA...CCGAAAACACCG...GTAATCATAGTA...AAGATCGAAAGA...

- Split strings in equally sized pieces
- Interleave pieces in memory → Improve locality

Initially: Each warp loads a cache line (128 bytes)

CTAAACGTCTAA...'CCGAAAACACCG...GTAATCATAGTA...AAGATCGAAAGA...

Partial solution: Threads might progress in different rate

Adapt Memory Layout: Pivoting Strings

Baseline (contiguous) layout

String I String 2 String 3

CTAACCGAGTAAAGAACGTAAACTCATTCGACTAAACCGAGTAAAGA...

Pivoted layout

CTAAACGTCTAA...CCGAAAACACCG...GTAATCATAGTA...AAGATCGAAAGA...

- Split strings in equally sized pieces
- Interleave pieces in memory → Improve locality

In presence of partial matches some threads might fall "behind"

Partial solution: Threads might progress in different rate

Transform Control Flow of KMP

Knuth-Morris-Pratt Algorithm

Shift pattern table - | 0 0 | 2 3 4

Input: ACACATACCTACTTTACGTACGT Step 6 j=

Pattern: ACACACG Character mismatch

While Loop

ACACATACCTACTTTACGTACGT
ACACACACG Mismatch→ Shift pattern
ACACATACCTACTTTACGTACGT
ACACACACG Mismatch→ Shift pattern

i=5

i=5

j=3

j=1

• • •

ACACATACCTACTTTACGTACGT
ACACACG
Shift pattern

Step 7

i=6

j=0

KMP Hybrid: Advance input in pivoted piece size

GPU vs. CPU Comparison

```
select s_suppkey
from supplier
where s_comment like '%Customer%Complaints%'
```

Performance Metrics

- Price (\$)
- Performance (GB/s)
- Performance per \$
- Estimated energy consumption

-Evaluate three systems

- CPU only system
- GPU only system
- CPU+GPU combined system

GPU vs. CPU Comparison

	GPU	CPU (Boost BM)	CPU (CMPISTRI)	CPU+GPU
Price (\$)	3100	952	952	4052
Performance (GB/s)	98.7	40.75	43.I	138.7
Energy consumed (J)	1.27	2.49	2.35	1.78
Performance/\$	31.89	42.8	45.28	34.25

Circle best column value per row

CPU: Dual-socket E5-2620 – Band. 102.4 GB/s

GPU:Tesla K40 – Band. 288 GB/s

Design system by choosing the desired trade-offs

Outline

- CPU vs GPU introduction
- Accelerating wildcard string search
 - o Insight: Change the layout of the strings in the GPU main memory
 - 3X speed-up & 2X energy savings against parallel state-of-the-art CPU libraries
- **Gompresso: Massively parallel decompression**
 - o Insight: Trade-off compression ratio for increased parallelism
 - o 2X speed-ups & 1.2X energy savings against multi-core state-of-the-art CPU libraries
- OGPUs on the cloud

Example: Why Use Compression?

A) Reduce basic S3 costs Cloud Warehouse Amazon S3 Data lakes Databases Query Engine B) Reduce query costs Database

Background: LZ77 Compression

Input characters

O 1 2 3 ...
ATTACTAGAATGT TACTAATCTGAT
CGGGCCGGGCCTG

Output

Background: LZ77 Compression

Input characters

Sliding window buffer Unencoded lookahead characters

Background: LZ77 Decompression

Input data block

Output data block

How to Parallelize Decompression?

> 1000 threads available!

Input file

Naïve approach performance 200 MB/s << 250 GB/s (K20x)

Improve utilization: Group strings of literals with the following back-reference

1) Read tokens (parallel)

Compressed input

Uncompressed output

2) Write literals (parallel prefix sum)

Compressed input

Uncompressed output

Problem: Back-references processed in parallel might be dependent! \rightarrow Use voting function ___ballot to detect dependencies

How to Handle Thread Dependencies?

MRR

Tokens

Second loop: Dependencies satisfied

Bandwidth: 7 GB/s

- I) Write literals (parallel)
- 2) While(!all backreferences written)
 - a) Check dependencies satisfied (parallel)
 - b) Copy back-references w/o pending dependencies

DE

Tokens

Bandwidth: 16 GB/s

A) Compression

Only search for matches w/o dependencies

B) Decompression

Copy back-references (fully parallel)

Decompression Skyline

CPU: Dual-socket E5-2620 – Band. 102.4 GB/s

GPU: Tesla K40 – Band. 288 GB/s

GPUs on the Cloud

Cloud offerings

- AWS
- Google Cloud
- Microsoft Azure
- IBM Softlayer
- Nimbix

Opportunity

• Evaluate the usefulness of GPUs/FPGAs without the high investment

Special considerations

- Charging model
- Scaling capabilities
- Software licensing

Summary

- Accelerated wildcard string search
 - o Insight: Change the layout of the strings in the GPU main memory
 - 3X speed-up & 2X energy savings against parallel state-of-the-art CPU libraries
- Gompresso: Massively parallel decompression
 - o Insight: Trade-off compression ratio for increased parallelism
 - o 2X speed-ups & 1.2X energy savings against multi-core state-of-the-art CPU libraries
- oGPUs on the cloud: Open questions