GPU-Acceleration of In-Memory

Data Analytics
Evangelia Sitaridi
AWS Redshift
o .l 1
mEramaZon
BF webservices

GPUs for Telcos

* Fast query-time

* Quickly identify network problems No time to index data
* Respond fast to customers

* Geospatial visualization
* Take advantage of GPU visualization capabilities

SMS Hub traffic

*Picture taken from:
http://www.vizualytics.com/Solutions/Telecom/Telecom.html

2

GPUs for Social Media Analytics

q TWEET MAP
D

Search terms: debate
Match regexp: “/\B#\w*[a-zA-Z]+\w*/

Filter location

#sbmiphoneé

#britonedirection

9,942

W English W Spanish W Portuguese M Indonesian M Undetermined Japanese Turkish French W Arabic W Tagalog

LANGUAGE 22,452,300 8,186,886 7,811,199 4,143,992 3,167,804 2,990,132 2814732 1575346 1310488 1272219

#pdx911

Challenges for GPU Databases

» Special threading model = Increased programming complexity
* Which algorithms more efficient for GPUs?
* How much multiple code paths increase cost of code maintenance!

* Special memory architecture
* How to adapt data layout?

* Limited memory capacity
e Data transfer cost between CPUs and GPUs

a) Through PCI/E link to the GPU
b) From storage system to the GPU

* Fair comparison against software-based solutions

Challenges for GPU Databases

» Special threading model = Increased programming complexity
* Which algorithms more efficient for GPUs?
* How much multiple code paths increase cost of code maintenance!

* Special memory architecture
* How to adapt data layout?

* Limited memory capacity
e Data transfer cost between CPUs and GPUs

a) Through PCI/E link to the GPU
b) From storage system to the GPU

* Fair comparison against software-based solutions

Outline

oCPU vs GPU introduction

oAccelerated wildcard string search

o Insight: Change the layout of the strings in the GPU main memory
o0 3X speed-up & 2X energy savings against parallel state-of-the-art CPU libraries

oGompresso: Massively parallel decompression

o Insight: Trade-off compression ratio for increased parallelism
o 2X speed-ups & 1.2X energy savings against multi-core state-of-the-art CPU libraries

oGPUs on the cloud

CPU-GPU Analogies

Goal: Low latency

Control ALU ALU
ALU ALU
Cache
DRAM
CPU
CPU thread
RAM

Tens of threads

Goal: High throughput
(overlapping different instructions)

DRAM

GPU

@) GPU warp
@=) Global memory
=) Thousands of threads

Hundreds of GBs capacity ¢mm) Few tens of GB

GPU Architecture

K40: 15 Stream Multiprocessors

GPU Thread

&

N

if(condition)

a++;

U

else
b++;

Vi

endif

CUDA Kernel

Warp: Unit of execution

GPU Architecture

K40: 15 Stream Multiprocessors

GPU Thread

N

CUDA Kernel

Branch

if(condition)

else

endif

a++;

b++;

Branch complete

SM15

Warp
schedul

Warp
er | scheduler

SM1

Register File

R R

SM2

warp 1

warp n

Global Memory

Warp: Unit of execution

GPU Architecture

K40: 15 Stream Multiprocessors

GPU Thread

N

CUDA Kernel

Branch

if(condition)

else

endif

at++,

b++;

Branch complete

SM15

Warp
schedul

Warp
er | scheduler

SM1

Register File

QL LR
QR L

SM2

warp 1

warp n

Global Memory

Warp: Unit of execution

GPU Architecture

K40: 15 Stream Multiprocessors

GPU Thread

N

CUDA Kernel

Branch

if(condition)

at++,

else
b++;

endif

Branch complete

SM15

Warp Warp |SMI
scheduler | scheduler

Register File

R R
230 A
BREE

SM2

warp 1 warp n

Global Memory

Warp: Unit of execution

GPU Architecture

K40: 15 Stream Multiprocessors

GPU Thread

N

K

;.%

CUDA Kernel

Branch

if(condition)

at++,

else
b++;

endif

Branch complete

SM15

Warp Warp |SMI
scheduler | scheduler

Register File

QL LR
QRRL L
L L

SM2

R

warp 1 warp n

Global Memory

Outline

oCPU vs GPU introduction

oAccelerated wildcard string search

o Insight: Change the layout of the strings in the GPU main memory
o 3X speed-up & 2X energy savings against parallel state-of-the-art CPU libraries

oGompresso: Massively parallel decompression

o Insight: Trade-off compression ratio for increased parallelism
o 2X speed-ups & 1.2X energy savings against multi-core state-of-the-art CPU libraries

oGPUs on the cloud

Text Query Applications

ACGTACCTGATCGTAGGATCCCAAGTACATCATTTC

Input

Search Pattern G E N O M I C DATA

Id Address

T A % k99
3 “9 Front St,Washington DC, 20001” — 3rdAve*New York

8 “3338 A Lockport Pl #6, Margate City, NJ, 8402”
9 “18 3rd Ave, New York, NY, 10016”

|5 “88 Sw 28th Ter, Harrison, NJ, 7029”

|6 “87895 Concord Rd, La Mesa, CA, 91142

Search Pattern

\

Q2,9,13,14,16,20 of TPC-H contain expensive LIKE predicates

Wildcard Search Challenges

* Approaches simplifying search cannot be applied
* String indexes, e.g. suffix trees
* For query ‘%scustomer%complaints’ multiple queries need be issued
* "%customer?%’ AND ‘J%ecomplaints%’
* Confirm results
* Dictionary compression
* Wildcard searches not simplified using dictionaries
* String data need to be decompressed

Background: How to Search Text Fast?

Knuth-Morris-Pratt Algorithm

Input: ACACATACCTACTTTACGTACGT Ster¢
Pattern: ACACACG Character mismatch

Shift patterntable -] Q Q] 2 3 4

Advance to the next character:
a) If the input matches to the pattern
b) While there is a mismatch shift to the left of the pattern
Stop when the beginning of the pattern has been reached

U1 O

Background: How to Search Text Fast?

Knuth-Morris-Pratt Algorithm

mputs ACACATACCTACTTTACGTACGT St |
Pattern: ACACACG Character mismatch

ACACATACCTACTTTACGTACGT Stp? =5
ACACACG Shift pattern |

Il
U1 N

— o —

Shift patterntable -] Q Q] 2 3 4

Advance to the next character:
a) If the input matches to the pattern
b) While there is a mismatch shift to the left of the pattern
Stop when the beginning of the pattern has been reached

GPU Limiting factor: Cache Pressure

Threads matching different strings

e

Warp size: 32
Stream Multiprocessors: 15 /~ x
#Warps in each SM: 64

=

Cache footprint: 30720 cache lines

>>

L2 Capacity: 12288 cache lines Tesla K40 architecture

Adapt Memory Layout: Pivoting Strings

Baseline (contiguous) layout

String | String 2 String 3
CTAACCGAGTAAAGA
Pivoted layout
CTAA ...CCGA ...GTAA ...AAGA

— Split strings in equally sized pieces
— Interleave pieces in memory = Improve locality

l Initially: Each warp loads a cache line (128 bytes)

{CTAA ...\CCGA ...GTAA ...AAGA
1 1
0 TI1I T2

Partial solution: Threads might progress in different rate

Adapt Memory Layout: Pivoting Strings

Baseline (contiguous) layout

String | String 2 String 3
CTAACCGAGTAAAGA
Pivoted layout
CTAA ...CCGA ...GTAA ...AAGA

— Split strings in equally sized pieces
— Interleave pieces in memory = Improve locality
In presence of partial matches some threads might fall “behind”

A

CTAA ...&CGA ..VGTAA ...}A\AGA

P

T0 TI T2

Memory divergence!

Partial solution: Threads might progress in different rate
20

Transform Control Flow of KMP

hift pattern table -
Knuth-Morris-Pratt Algorithm Shift pattern table -] Q O | 234

Input: ACACATACCTACTTTACGTACGT Ster¢ s
Pattern: ACACACG Character mismatch

ACACATACCTACTTTACGTACGT -
ACACACG Mismatch-> Shift pattern |
ACACATACCTACTTTACGTACGT j
ACACACG Mismatch=> Shift pattern

While Loop

ACACATACCTACTTTACGTACGT Stee? =6
ACACACG Shift pattern =0

KMP Hybrid: Advance input in pivoted piece size

GPU vs. CPU Comparison

select s_suppkey
from supplier
where s_comment like "% Customer%Complaints%’

—Performance Metrics
— Price ($)
— Performance (GB/s)
— Performance per $
— Estimated energy consumption

—Evaluate three systems

— CPU only system
— GPU only system
— CPU+GPU combined system

22

GPU vs. CPU Comparison

GPU CPU (Boost BM) CPU (CMPISTRI) CPU+GPU

Price ($) 3100 4052
Performance (GBJs) 98.7 40.75 43.)

Energy consumed () @ 2.49 2.35 .78
Performance/$ 31.89 42.8 34.25

Circle best column value per row CPU: Dual-socket E5-2620 — Band. 102.4 GB/s
GPU:Tesla K40 — Band. 288 GB/s

Design system by choosing the desired trade-offs
23

Outline

oCPU vs GPU introduction

oAccelerating wildcard string search

o Insight: Change the layout of the strings in the GPU main memory
o0 3X speed-up & 2X energy savings against parallel state-of-the-art CPU libraries

oGompresso: Massively parallel decompression

o Insight: Trade-off compression ratio for increased parallelism
o 2X speed-ups & 1.2X energy savings against multi-core state-of-the-art CPU libraries

oGPUs on the cloud

24

Example: Why Use Compression?

A) Reduce basic S3 costs
Cloud Warehouse Amazon S3

Databases Data lakes -
Query Engine -
I - - - -
B) Reduce -
Database query costs - -

Background: LZ77 Compression

Input characters

Output
0123 -
ATTACTAGAATGT TACTAATCTGAT ATTACTAGAATGT(2,5)...
CGGGCCGGGCCTG
Literals Backreferences

Unmatched characters (Position, Length)

Background: LZ77 Compression

Input characters

Find longest match Output
0123 ..
ATTACTAGAATGT TACTAATCTGAT ATTACTAGAATGT(2,5)...
CGGGCCGGGCCTG
Literals Backreferences

Unmatched characters (Position, Length)

Background: LZ77 Decompression

I%'Iﬂﬂﬂﬂ

DA Cco

Window buffer contents

\ /

okens | (0,4)M(5,4)COMM...

WIKIMEDIACOMM

Input data block

Output data block

28

How to Parallelize Decompression?
>[000 threads available!

Data block | Thread |

Data block 2 Thread 2

Split input file in independent blocks

Input file
Naive approach performance 200 MB/s << 250 GB/s (K20x)
29

GPU LZ77 Decompression

Improve utilization: Group strings of literals with the following back-reference

jun

Tokens

Compressed input Uncompressed output

GPU LZ77 Decompression

1) Read tokens (parallel)

T

>

Tokens

Compressed input Uncompressed output

GPU LZ77 Decompression

2) Write literals (parallel prefix sum)

T

>

Tokens

Compressed input Uncompressed output

GPU LZ77 Decompression

3.2) Write uncompressed output:

Tokens V<) CCGACCCGGCCCAGTTCCGA
|—> 3.1) Compute uncompressed output
Compressed input Uncompressed output

Problem: Back-references processed in parallel might be dependent! 2
Use voting function __ ballot to detect dependencies

How to Handle Thread Dependencies?

MRR ST
|) Write literals (parallel)
Tok i '
okens .) 2) While('all backreferences written)
---------------- a) Check dependencies satisfied (parallel)
Second loop: Dependencies satisfied b) Copy back-references w/o Pending
dependencies
DE
Tokene T A) Compression

Only search for matches w/o dependencies
B) Decompression
Copy back-references (fully parallel)

Uncompressed input .. . CCGACGTTCCGT...

Decompression Skyline

CPU: Dual-socket E5-2620 — Band. 102.4 GB/s

GPU:Tesla K40 — Band. 288 GB/s . oy s ;
English wikipedia

18 T T T T T T T T
16 ' Gomp/Byte Byte-level encoding
14

12
10 b Gomp/Byte (In/Out)

‘ Snappy (CPU) Bit-level encoding

Gomp/Bit
@ zstdicru)

zlib (CPU)

Decompression speed (GB/s)

o N & O @

1.8 2 2.2 24 26 2.8 3 3.2 34
Compression ratio

3.6

35

GPUs on the Cloud

* Cloud offerings
* AWS
* Google Cloud
* Microsoft Azure
* IBM Softlayer
* Nimbix

* Opportunity

* Evaluate the usefulness of GPUs/FPGAs without the high investment

* Special considerations
* Charging model
* Scaling capabilities
* Software licensing

Summary

oAccelerated wildcard string search

o Insight: Change the layout of the strings in the GPU main memory
o0 3X speed-up & 2X energy savings against parallel state-of-the-art CPU libraries

oGompresso: Massively parallel decompression

o Insight: Trade-off compression ratio for increased parallelism
o 2X speed-ups & 1.2X energy savings against multi-core state-of-the-art CPU libraries

oGPUs on the cloud: Open questions

37

